On the Road: Route Proposal from Radar Self-Supervised by Fuzzy LiDAR Traversability
نویسندگان
چکیده
منابع مشابه
Supervised Traversability Learning for Robot Navigation
This work presents a machine learning method for terrain’s traversability classification. Stereo vision is used to provide the depth map of the scene. Then, a v-disparity image calculation and processing step extracts suitable features about the scene’s characteristics. The resulting data are used as input for the training of a support vector machine (SVM). The evaluation of the traversability ...
متن کاملSelf - supervised Learning Method for Unstructured Road Detection using Fuzzy Support Vector
Road detection is a crucial problem in the application of autonomous vehicle and on-road mobile robot. Most of the recent methods only achieve reliable results in some particular well-arranged environments. In this paper, we describe a road detection algorithm for front-view monocular camera using road probabilistic distribution model (RPDM) and online learning method. The primary contribution ...
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولOn Tracking-driven Road Map Extraction from Gmti Radar Data
For analyzing dynamic scenarios characterized by many ground moving vehicles, airborne GMTI radar is a well-suited sensor due to its wide-area, all-weather, day/night, and real time capabilities (GMTI: Ground Moving Target Indicator). The generation of GMTI tracks from these data is the backbone for producing a “recognized ground picture” as well as for analyzing traffic flows. In this paper we...
متن کاملGONet: A Semi-Supervised Deep Learning Approach For Traversability Estimation
We present semi-supervised deep learning approaches for traversability estimation from fisheye images. Our method, GONet, and the proposed extensions leverage Generative Adversarial Networks (GANs) to effectively predict whether the area seen in the input image(s) is safe for a robot to traverse. These methods are trained with many positive images of traversable places, but just a small set of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AI
سال: 2020
ISSN: 2673-2688
DOI: 10.3390/ai1040033